Effects of activation peptide bond cleavage and fragment 2 interactions on the pathway of exosite I expression during activation of human prethrombin 1 to thrombin.
نویسندگان
چکیده
Activation of prothrombin (Pro) by factor Xa to form thrombin occurs by proteolysis of Arg271-Thr272 and Arg320-Ile321, resulting in expression of regulatory exosites I and II. Cleavage of Pro by thrombin liberates fragment 1 and generates the zymogen analog, prethrombin 1 (Pre 1). The properties of exosite I on Pre 1 and its factor Xa activation intermediates were characterized in spectroscopic and equilibrium binding studies using the fluorescein-labeled probe, hirudin(54-65) ([5F]Hir(54-65)-(SO3-)). Prethrombin 2 (Pre 2), formed by factor Xa cleavage of Pre 1 at Arg271-Thr272, had the same affinity for hirudin(54-65) peptides as Pre 1 in the absence or presence of near-saturating fragment 2 (F2). Pre 2 and thrombin also had indistinguishable affinities for F2. By contrast, cleavage of Pre 1 at Arg320-Ile321, to form active meizothrombin des-fragment 1 MzT(-F1), showed a 11- to 20-fold increase in affinity for hirudin(54-65), indistinguishable from the 13- to 20-fold increase seen for conversion of Pre 2 to thrombin. Thus, factor Xa cleavage of Pre 1 at Arg271-Thr272 does not effect exosite I expression, whereas cleavage at Arg320-Ile321 results in concomitant activation of the catalytic site and exosite I. Furthermore, expression of exosite I on the Pre 1 activation intermediates is not modulated by F2, and exosite II is not activated conformationally. The differential expression of exosite I affinity on the Pre 1 activation intermediates and the previously demonstrated role of (pro)exosite I in factor Va-dependent substrate recognition suggest that changes in exosite I expression may regulate the rate and direction of the Pre 1 activation pathway.
منابع مشابه
Role of prothrombin fragment 1 in the pathway of regulatory exosite I formation during conversion of human prothrombin to thrombin.
Prothrombin (Pro) activation by factor Xa generates the thrombin catalytic site and exosites I and II. The role of fragment 1 (F1) in the pathway of exosite I expression during Pro activation was characterized in equilibrium binding studies using hirudin(54-65) labeled with 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoate ([NBD]Hir(54-65)(SO3-)) or 5-(carboxy)fluorescein ([5F]Hir(54-65)(...
متن کاملNovel fluorescent prothrombin analogs as probes of staphylocoagulase-prothrombin interactions.
Staphylocoagulase (SC) is a potent nonproteolytic prothrombin (ProT) activator and the prototype of a newly established zymogen activator and adhesion protein family. The staphylocoagulase fragment containing residues 1-325 (SC-(1-325)) represents a new type of nonproteolytic activator with a unique fold consisting of two three-helix bundle domains. The N-terminal, domain 1 of SC (D1, residues ...
متن کاملThe activation of prothrombin by the prothrombinase complex. The contribution of the substrate-membrane interaction to catalysis.
The conversion of prothrombin to thrombin requires the cleavage of two peptide bonds and is catalyzed by the prothrombinase complex composed of factors Xa and Va assembled on a membrane surface. Presteady-state kinetic studies of the effects of membranes on the proteolytic reaction were undertaken using model membranes composed of phosphatidylcholine and phosphatidylserine (PCPS). The concentra...
متن کاملFibrinogen substrate recognition by staphylocoagulase.(pro)thrombin complexes.
Thrombin generation and fibrinogen (Fbg) clotting are the ultimate proteolytic reactions in the blood coagulation pathway. Staphylocoagulase (SC), a protein secreted by the human pathogen Staphylococcus aureus, activates prothrombin (ProT) without proteolysis. The SC.(pro)thrombin complex recognizes Fbg as a specific substrate, converting it directly into fibrin. The crystal structure of a full...
متن کاملP38: The Immunoregulatory Effect of Cyclic Dinucleotides on Human Immune Cells
In multiple sclerosis (MS) beneficial effects have been assigned to the interferon (IFN)-I subclass IFN-ß, making its administration a first-line disease-modifying treatment in MS. IFN-I responses can be induced by cyclic-dinucleotide (CDN) triggered activation of Stimulator-of-interferon-genes (STING) and have essential immunomodulatory effects. A beneficial effect of STING activation on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 45 شماره
صفحات -
تاریخ انتشار 2003